AMPICILLIN

Ampicillin is a beta-lactam antibiotic that is part of the aminopenicillin family and is roughly equivalent to its successor, amoxicillin in terms of spectrum and level of activity. It can sometimes result in reactions that range in severity from a rash (in the case of patients that may unwittingly have mononucleosis) to potentially lethal allergic reactions such as anaphylaxis. However, as with other penicillin drugs, it is relatively non-toxic and adverse effects of a serious nature are encountered only rarely.

 

MECHANISM OF ACTION

Belonging to the penicillin group of beta-lactam antibiotics, ampicillin is able to penetrate Gram-positive and some Gram-negative bacteria. It differs from penicillin only by the presence of an amino group. That amino group helps the drug penetrate the outer membrane of gram-negative bacteria. Ampicillin acts as a competitive inhibitor of the enzyme transpeptidase, which is needed by bacteria to make their cell walls. It inhibits the third and final stage of bacterial cell wall synthesis in binary fission, which ultimately leads to cell lysis. Ampicillin has received FDA approval for its mechanism of action.

EFFECTS ON CHLOROPLAST DIVISION

Ampicillin, like other B-lactam antibiotics, not only blocks the division of bacteria, but also the division of chloroplasts of the Glaucophytes (called cyanelles) and chloroplasts of the moss Physcomitrella patens, a bryophyte. In contrast, it has no effect on the plastids of the higher developed vascular plant Lycopersicon esculentum L. (tomato).

SPECTRUM OF BACTERIAL SUSCEPTIBILITY AND RESISTANCE

Bacillus subtilis, Enterococcus faecalis, and Haemophilus influenzae (non-ESBL)species are generally susceptible to ampicillin,while Enterobacteriaceae, Escherichia coli (ESBL), and Klebsiella oxytoca are resistant to ampicillin.In the meanwhile, some Aeromonas hydrophila, Staphylococci, Staphylococcus haemolyticus and Shigella flexneri have developed resistance to ampicillin to varying degrees.

APPLICATION

Ampicillin is closely related to amoxicillin, another type of penicillin, and both are used to treat urinary tract infections, otitis media, Haemophilus influenzae, salmonellosis and Listeria meningitis. It is used with flucloxacillin in the combination antibiotic co-fluampicil for empiric treatment of cellulitis; providing cover against Group A streptococcal infection whilst the flucloxacillin acts against the Staphylococcus aureus bacterium. Of concern is the number of bacteria that become resistant to Ampicillin necessitating combination therapy or use of other antibiotics. All Pseudomonas and most strains of Klebsiella and Aerobacter are considered resistant. Additionally, resistance to ampicillin is seen in enterobacter, citrobacter, serratia, indole-positive proteus species, and other hospital-acquired gram negative infections. An ampicillin resistance gene (abbreviated ampR) is commonly used as a selectable marker in routine biotechnology. Due to concerns over horizontal gene transfer to pathogenic organisms in the wild, the European Food Safety Authority restricts use of this gene (among other resistance genes) in commercial genetically modified organisms. The enzyme responsible for degrading ampicillin is called beta-lactamase, in reference to the beta-lactam structure of ampicillin and related drugs.

HISTORY

Ampicillin has been used extensively to treat bacterial infections since 1961. Until the introduction of ampicillin by the British company Beecham, penicillin therapies had only been effective against Gram-positive organisms such as staphylococci and streptococci. Ampicillin (originally branded as 'Penbritin') also demonstrated activity against Gram-negative organisms such as H. influenzae, coliforms and Proteus spp. Ampicillin was the first of a number of so-called broad spectrum penicillins subsequently introduced by Beecham.

For more information view the source:Wikipedia

Back to Wiki