ROUNDWORM

The nematodes or roundworms are the most diverse phylum of pseudocoelomates, and one of the most diverse of all animals. Nematode species are very difficult to distinguish; over 28,000 have been described, of which over 16,000 are parasitic. It has been estimated that the total number of nematode species might be approximately 1,000,000. Unlike cnidarians or flatworms, roundworms have a digestive system that is like a tube with openings at both ends.

 

HABITATS

 Nematodes have successfully adapted to nearly every ecosystem from marine to fresh water, to soils, and from the polar regions to the tropics, as well as the highest to the lowest of elevations. They are ubiquitous in freshwater, marine, and terrestrial environments, where they often outnumber other animals in both individual and species counts, and are found in locations as diverse as mountains, deserts, oceanic trenches, and within the earth's lithosphere. They represent, for example, 90% of all life forms on the ocean floor. Their numerical dominance, often exceeding more than 1 million individuals per square meter and accounting for about 80% of all individual animals on earth, their diversity in lifestyles and their presence at various trophic levels point at an important role in many ecosystems. Their many parasitic forms include pathogens in most plants and animals (including humans). Some nematodes can undergo cryptobiosis. One group of carnivorous fungi, the nematophagous fungi, are predators of soil nematodes. They set enticements for the nematodes in the form of lassos or adhesive structures. Nematodes have even been found at great depth (0.9�3.6 km) below the surface of the Earth in gold mines in South Africa. Nathan Cobb (from p. 472 of Cobb, 1914) described the ubiquitous presence of nematodes on Earth as follows: "In short, if all the matter in the universe except the nematodes were swept away, our world would still be dimly recognizable, and if, as disembodied spirits, we could then investigate it, we should find its mountains, hills, vales, rivers, lakes, and oceans represented by a film of nematodes. The location of towns would be decipherable, since for every massing of human beings there would be a corresponding massing of certain nematodes. Trees would still stand in ghostly rows representing our streets and highways. The location of the various plants and animals would still be decipherable, and, had we sufficient knowledge, in many cases even their species could be determined by an examination of their erstwhile nematode parasites.

 

TAXONOMY AND SYSTEMATICS

The group was originally defined by Karl Rudolphi in 1808 under the name Nematoidea, from Ancient Greek. It was reclassified as family Nematodes by Burmeister in 1837 and order Nematoda by K. M. Diesing in 1861. At its origin, the "Nematoidea" included both roundworms and horsehair worms. Along with Acanthocephala, Trematoda and Cestoidea, it formed the group Entozoa. The first differentiation of roundworms from horsehair worms, though erroneous, is due to von Siebold (1843) with orders Nematoidea and Gordiacei (Gordiacea). They were classed along with Acanthocephala in the new phylum Nemathelminthes (today obsolete) by Gegenbaur (1859). The taxon Nematoidea, including the family Gordiidae (horsehair worms), was then promoted to the rank of phylum by Ray Lankester (1877). In 1919, Nathan Cobb proposed that roundworms should be recognized alone as a phylum. He argued they should be called nema(s) in English rather than "nematodes" and defined the taxon Nemates (Latin plural of nema). Since Cobb was the first to exclude all but nematodes from the group, some sources consider the valid taxon name to be Nemates or Nemata, rather than Nematoda.

 

PHYLOGENY

The relationships of the nematodes and their close relatives among the protostomian Metazoa are unresolved. Traditionally, they were held to be a lineage of their own, but in the 1990s it was proposed that they form a clade together with moulting animals such as arthropods. This group has been named Ecdysozoa. However, the monophyly of the Ecdysozoa was never unequivocally accepted: while most researchers consider at least the placement of arthropods as close relatives of annelids�with which they were formerly united�to be unwarranted, the presumed close relationships of the nematodes and relatives with the arthropods has been a major point of contention. Even though the amount of data since accumulated in regard to this problem is staggering, the situation seems if anything less clear these days. DNA sequence data, initially strongly supporting the Ecdysozoa hypothesis, have become rather equivocal on ecdysozoan monophyly, and are simply unable to refute either a close or a more distant relationship between the arthropod and nematode lineages. That the roundworms have a large number of peculiar apomorphies and in many cases a parasitic lifestyle confounds morphological analyses. Genetic analyses of roundworms[citation needed] suggest that�as is also indicated by their unique morphological features�the group has been under intense selective pressure during its early radiation, resulting apparently in accelerated rates of both morphological and molecular evolution. Furthermore, no distinctive apomorphies of Ecdysozoa are known; even moulting has recently been confirmed to occur outside the presumed clade. Conversely, the identity of the closest living relatives of the Nematoda has always been considered to be well resolved. Morphological characters and molecular phylogenies agree with placement of the roundworms as sister taxon to the parasitic horsehair worms (Nematomorpha); together they make up the Nematoida. Together with the Scalidophora (formerly Cephalorhyncha), the Nematoida form the Introverta. It is entirely unclear whether the Introverta are, in turn, the closest living relatives of the enigmatic Gastrotricha; if so, they are considered a clade Cycloneuralia, but there is much disagreement both between and among the available morphological and molecular data. The Cycloneuralia or the Introverta�depending on the validity of the former�are often ranked as a superphylum.

 

NEMATODE SYSTEMATICS

Due to the lack of knowledge regarding many nematodes, their systematics is contentious. An earliest and influential classification was proposed by Chitwood and Chitwood ,later revised by Chitwood, who divided the phylum into two�the Aphasmidia and the Phasmidia. These were later renamed Adenophorea (gland bearers) and Secernentea (secretors) respectively. The Secernentea share several characteristics including the presence of phasmids, a pair of sensory organs located in the lateral posterior region and this was used as the basis for this division. This scheme was adhered to in many later classifications even though it was realized that the Adenophorea were not a uniform group. Initial DNA sequence studies suggested the existence of five clades: Dorylaimia Enoplia Spirurina Tylenchina Rhabditina As it seems, the Secernentea are indeed a natural group of closest relatives. But the "Adenophorea" appear to be a paraphyletic assemblage of roundworms simply retaining a good number of ancestral traits. The old Enoplia do not seem to be monophyletic either but to contain two distinct lineages. The old group "Chromadoria" seem to be another paraphyletic assemblage, with the Monhysterida representing a very ancient minor group of nematodes. Among the Secernentea, the Diplogasteria may need to be united with the Rhabditia. while the Tylenchia might be paraphyletic with the Rhabditia. The understanding of roundworm systematics and phylogeny as of 2002 is summarised below: Phylum Nematoda Basal order Monhysterida Class Dorylaimea Class Enoplea Class Secernentea Subclass Diplogasteria (disputed) Subclass Rhabditia (paraphyletic?) Subclass Spiruria Subclass Tylenchia (disputed) "Chromadorea" assemblage Later work has suggested the presence of 12 clades. It appears that Secernenteal is group that includes virtually all major animal and plant 'nematode' parasites�arose from within the Adenophorea. A major effort to improve the systematics of this phylum is in progress and being organised by the 959 Nematode Genomes.

 

ANATOMY

Nematodes are slender worms, typically less than 2.5 millimetres (0.10 in) long. The smallest nematodes are microscopic, while free-living species can reach as much as 5 centimetres (2.0 in) and some parasitic species are larger still, reaching over a meter in length. The body is often ornamented with ridges, rings, bristles or other distinctive structures. The head of a nematode is relatively distinct. Whereas the rest of the body is bilaterally symmetrical, the head is radially symmetrical, with sensory bristles and, in many cases, solid 'head-shields' radiating outwards around the mouth. The mouth has either three or six lips, which often bear a series of teeth on their inner edges. An adhesive 'caudal gland' is often found at the tip of the tail. The epidermis is either a syncytium or a single layer of cells, and is covered by a thick collagenous cuticle. The cuticle is often of complex structure, and may have two or three distinct layers. Underneath the epidermis lies a layer of muscle cells. Projections run from the inner surface of these cells towards the nerve cords; this is a unique arrangement in the animal kingdom, in which nerve cells normally extend fibres into the muscles rather than vice versa.

 

DIGESTIVE SYSTEM

The oral cavity is lined with cuticle, which is often strengthened with ridges or other structures, and, especially in carnivorous species, may bear a number of teeth. The mouth often includes a sharp stylet which the animal can thrust into its prey. In some species, the stylet is hollow, and can be used to suck liquids from plants or animals. The oral cavity opens into a muscular, sucking pharynx, also lined with cuticle. Digestive glands are found in this region of the gut, producing enzymes that start to break down the food. In stylet-bearing species, these may even be injected into the prey. There is no stomach, with the pharynx connecting directly to the intestine that forms the main length of the gut. This produces further enzymes, and also absorbs nutrients through its lining. The last portion of the intestine is lined by cuticle, forming a rectum which expels waste through the anus just below and in front of the tip of the tail. The intestine also has valves or sphincters at either end to help control the movement of food through the body.

 

EXCRETORY SYSTEM

Nitrogenous waste is excreted in the form of ammonia through the body wall, and is not associated with any specific organs. However, the structures for excreting salt to maintain osmoregulation are typically more complex. In many marine nematodes, one or two unicellular renette glands excrete salt through a pore on the underside of the animal, close to the pharynx. In most other nematodes, these specialised cells have been replaced by an organ consisting of two parallel ducts connected by a single transverse duct. This transverse duct opens into a common canal that runs to the excretory pore.

 

NERVOUS SYSTEM

Our peripheral nerves run the length of the body on the dorsal, ventral, and lateral surfaces. Each nerve lies within a cord of connective tissue lying beneath the cuticle and between the muscle cells. The ventral nerve is the largest, and has a double structure forward of the excretory pore. The dorsal nerve is responsible for motor control, while the lateral nerves are sensory, and the ventral combines both functions. At the anterior end of the animal, the nerves branch from a dense, circular nerve ring surrounding the pharynx, and serving as the brain. Smaller nerves run forward from the ring to supply the sensory organs of the head. The body of nematodes is covered in numerous sensory bristles and papillae that together provide a sense of touch. Behind the sensory bristles on the head lie two small pits, or 'amphids'. These are well supplied with nerve cells, and are probably chemoreception organs. A few aquatic nematodes possess what appear to be pigmented eye-spots, but is unclear whether or not these are actually sensory in nature.

 

REPRODUCTION

Most nematode species are dioecious, with separate male and female individuals. Both sexes possess one or two tubular gonads. In males, the sperm are produced at the end of the gonad, and migrate along its length as they mature. The testes each open into a relatively wide sperm duct and then into a glandular and muscular ejaculatory duct associated with the cloaca. In females, the ovaries each open into an oviduct and then a glandular uterus. The uteri both open into a common vagina, usually located in the middle of the ventral surface. Reproduction is usually sexual. Males are usually smaller than females (often much smaller) and often have a characteristically bent tail for holding the female for copulation. During copulation, one or more chitinized spicules move out of the cloaca and are inserted into genital pore of the female. Amoeboid sperm crawl along the spicule into the female worm. Nematode sperm is thought to be the only eukaryotic cell without the globular protein G-actin. Eggs may be embryonated or unembryonated when passed by the female, meaning their fertilized eggs may not yet be developed. A few species are known to be ovoviviparous. The eggs are protected by an outer shell, secreted by the uterus. In free-living roundworms, the eggs hatch into larvae, which appear essentially identical to the adults, except for an underdeveloped reproductive system; in parasitic roundworms, the life cycle is often much more complicated. Nematodes as a whole possess a wide range of modes of reproduction. Some nematodes, such as Heterorhabditis spp., undergo a process called endotokia matricida: intrauterine birth causing maternal death. Some nematodes are hermaphroditic, and keep their self-fertilized eggs inside the uterus until they hatch. The juvenile nematodes will then ingest the parent nematode. This process is significantly promoted in environments with a low or reducing food supply. The nematode model species Caenorhabditis elegans and C. briggsae exhibit androdioecy, which is very rare among animals. The single genus Meloidogyne (root-knot nematodes) exhibit a range of reproductive modes, including sexual reproduction, facultative sexuality (in which most, but not all, generations reproduce asexually), and both meiotic and mitotic parthenogenesis. The genus Mesorhabditis exhibits an unusual form of parthenogenesis, in which sperm-producing males copulate with females, but the sperm do not fuse with the ovum. Contact with the sperm is essential for the ovum to begin dividing, but because there is no fusion of the cells, the male contributes no genetic material to the offspring, which are essentially clones of the female.

 

FREE-LIVING SPECIES

In free-living species, development usually consists of four molts of the cuticle during growth. Different species feed on materials as varied as algae, fungi, small animals, fecal matter, dead organisms and living tissues. Free-living marine nematodes are important and abundant members of the meiobenthos. They play an important role in the decomposition process, aid in recycling of nutrients in marine environments and are sensitive to changes in the environment caused by pollution. One roundworm of note, Caenorhabditis elegans, lives in the soil and has found much use as a model organism. C. elegans has had its entire genome sequenced, as well as the developmental fate of every cell determined, and every neuron mapped.

 

PARASITIC SPECIES

Nematodes commonly parasitic on humans include ascarids (Ascaris), filarias, hookworms, pinworms (Enterobius) and whipworms (Trichuris trichiura). The species Trichinella spiralis, commonly known as the 'trichina worm', occurs in rats, pigs, and humans, and is responsible for the disease trichinosis. Baylisascaris usually infests wild animals, but can be deadly to humans, as well. Dirofilaria immitis heartworms are known for causing heartworm disease by inhabiting the hearts, arteries, and lungs of dogs and some cats. Haemonchus contortus is one of the most abundant infectious agents in sheep around the world, causing great economic damage to sheep farms. In contrast, entomopathogenic nematodes parasitize insects and are considered by humans to be beneficial. One form of nematode is entirely dependent upon fig wasps, which are the sole source of fig fertilization. They prey upon the wasps, riding them from the ripe fig of the wasp's birth to the fig flower of its death, where they kill the wasp, and their offspring await the birth of the next generation of wasps as the fig ripens. A newly discovered parasitic tetradonematid nematode, Myrmeconema neotropicum, apparently induces fruit mimicry in the tropical ant Cephalotes atratus. Infected ants develop bright red gasters, tend to be more sluggish, and walk with their gasters in a conspicuous elevated position. These changes likely cause frugivorous birds to confuse the infected ants for berries, and eat them. Parasite eggs passed in the bird's feces are subsequently collected by foraging Cephalotes atratus and are fed to their larvae, thus completing the life cycle of M. neotropicum. Colorized electron micrograph of soybean cyst nematode (Heterodera sp.) and egg Plant-parasitic nematodes include several groups causing severe crop losses. The most common genera are Aphelenchoides (foliar nematodes), Ditylenchus, Globodera (potato cyst nematodes), Heterodera (soybean cyst nematodes), Longidorus, Meloidogyne (root-knot nematodes), Nacobbus, Pratylenchus (lesion nematodes), Trichodorus and Xiphinema (dagger nematodes). Several phytoparasitic nematode species cause histological damages to roots, including the formation of visible galls (e.g. by root-knot nematodes), which are useful characters for their diagnostic in the field. Some nematode species transmit plant viruses through their feeding activity on roots. One of them is Xiphinema index, vector of grapevine fanleaf virus), an important disease of grapes. Other nematodes attack bark and forest trees. The most important representative of this group is Bursaphelenchus xylophilus, the pine wood nematode, present in Asia and America and recently discovered in Europe.

 

AGRICULTURE AND HORTICULTURE

Depending on the species, a nematode may be beneficial or detrimental to plant health. From agricultural and horticulture perspectives, the two categories of nematode: predatory ones, which will kill garden pests like cutworms, and pest nematodes, like the root-knot nematode, which attack plants and those that act as vectors spreading plant viruses between crop plants. Predatory nematodes can be bred by soaking a specific recipe of leaves and other detritus in water, in a dark, cool place, and can even be purchased as an organic form of pest control. Rotations of plants with nematode resistant species or varieties is one means of managing parasitic nematode infestations. For example, marigolds, grown over one or more seasons (the effect is cumulative), can be used to control nematodes.Another is treatment with natural antagonists such as the fungus Gliocladium roseum. Chitosan is a natural biocontrol that elicits plant defense responses to destroy parasitic cyst nematodes on roots of soybean, corn, sugar beet, potato and tomato crops without harming beneficial nematodes in the soil. Furthermore, soil steaming is an efficient method to kill nematodes before planting the crop, but indiscriminately eliminates both harmful and beneficial ones. CSIRO has found a 13- to 14-fold reduction of nematode population densities in plots having Indian mustard (Brassica juncea) green manure or seed meal in the soil. Hundreds of Caenorhabditis elegans were featured in a research project on NASA's STS-107 space mission, and were the only known living organisms to have survived the Space Shuttle Columbia Disaster.

 

EPIDEMIOLOGY

A number of intestinal nematodes affect human beings. These include ascariasis, trichuriasis and hookworm disease.

For more information view the source:Wikipedia

Back to Wiki